# ON WEAKLY 2-ABSORBING IDEALS OF COMMUTATIVE RINGS 

AYMAN BADAWI AND AHMAD YOUSEFIAN DARANI<br>Communicated by Manfred Dugas


#### Abstract

Let $R$ be a commutative ring with identity $1 \neq 0$. Various generalizations of prime ideals have been studied. For example, a proper ideal I of R isweakly prime if $a, b \in R$ with $0 \neq a b \in I$, then either $a \in I$ or $b \in I$. Also a proper ideal $I$ of $R$ is said to be 2-absorbing if whenever $a, b, c \in R$ and $a b c \in I$, then either $a b \in I$ or $a c \in I$ or $b c \in I$. In this paper, we introduce the concept of a weakly 2-absorbing ideal. A proper ideal $I$ of $R$ is called a weakly 2-absorbing ideal of $R$ if whenever $a, b, c \in R$ and $0 \neq a b c \in I$, then either $a b \in I$ or $a c \in I$ or $b c \in I$. For example, every proper ideal of a quasi-local ring $(R, M)$ with $M^{3}=\{0\}$ is a weakly 2 -absorbing ideal of $R$. We show that a weakly 2 -absorbing ideal $I$ of $R$ with $I^{3} \neq 0$ is a 2 -absorbing ideal of $R$. We show that every proper ideal of a commutative ring $R$ is a weakly 2 -absorbing ideal if and only if either $R$ is a quasi-local ring with maximal ideal $M$ such that $M^{3}=\{0\}$ or $R$ is ringisomorphic to $R_{1} \times F$ where $R_{1}$ is a quasi-local ring with maximal ideal $M$ such that $M^{2}=\{0\}$ and $F$ is a field or $R$ is ring-isomorphic to $F_{1} \times F_{2} \times F_{3}$ for some fields $F_{1}, F_{2}, F_{3}$.


## 1. Introduction

In this paper, we study weakly 2 -absorbing ideals in commutative rings with identity, which are a generalization of weakly prime ideals. Recall that 2-absorbing ideals, which are a generalization of prime ideals, were introduced and investigated in [4] and most recently in [3]. Recall from [2] that a proper ideal $I$ of a commutative ring $R$ is said to be a weakly prime ideal of $R$ if whenever $a, b \in R$ and $0 \neq a b \in I$, then either $a \in I$ or $b \in I$. Also recall from [4] that a proper ideal $I$

[^0]of a commutative ring $R$ is called a 2-absorbing ideal of $R$ if whenever $a, b, c \in R$ and $a b c \in I$, then either $a b \in I$ or $a c \in I$ or $b c \in I$. We define a proper ideal of a commutative ring $R$ to be a weakly 2-absorbing ideal of $R$ if whenever $a, b, c \in R$ and $0 \neq a b c \in I$, then either $a b \in I$ or $a c \in I$ or $b c \in I$. In the second section of this paper, many basic properties of weakly 2 -absorbing ideals are studied, and in the third section, we characterize all commutative rings with the property that all proper ideals are weakly 2 -absorbing ideals.

We assume throughout that all rings are commutative with $1 \neq 0$. Let $R$ be a ring. Then $\operatorname{Nil}(R)$ denotes the ideal of nilpotent elements of $R$. An ideal $I$ of $R$ is said to be a proper ideal of $R$ if $I \neq R$. As usual, $\mathbb{Z}$, and $\mathbb{Z}_{n}$ will denote integers, and integers modulo $n$, respectively. Some of our examples use the $R(+) M$ construction as in [5]. Let $R$ be a ring and $M$ an $R$-module. Then $R(+) M=R \times M$ is a ring with identity $(1,0)$ under addition defined by $(r, m)+$ $(s, n)=(r+s, m+n)$ and multiplication defined by $(r, m)(s, n)=(r s, r n+s m)$. Note that $(0(+) M)^{2}=0$; so $0(+) M \subseteq \operatorname{Nil}(R(+) M)$.

## 2. BASIC PROPERTIES OF WEAKLY 2-ABSORBING IDEALS

It is clear that every 2 -absorbing ideal of a ring $R$ is a weakly 2 -absorbing ideal of $R$. If $R$ is any commutative ring, then $I=\{0\}$ is a weakly 2 -absorbing ideal of $R$ by definition. If $I=\{0\}$, then $I$ is a 2 -absorbing ideal of $\mathbb{Z}_{4}$, but $I$ is a weakly 2 -absorbing ideal of $\mathbb{Z}_{8}$ that is not a 2 -absorbing ideal of $\mathbb{Z}_{8}$. The following is an example of a nonzero weakly 2 -absorbing ideal that is not a 2 -absorbing ideal (also see Theorem 2.9 and Theorem 2.13).

Example 2.1. Let $M=\{0,4\}$. Then $M$ is an ideal of $\mathbb{Z}_{8}$. Let $R=\mathbb{Z}_{8}(+) M$ and let $I=\{(0,0),(0,4)\}$. Since $a b c \in I$ for some $a, b, c \in R \backslash I$ if and only if abc $=(0,0)$, we conclude that $I$ is a weakly 2-absorbing ideal of $R$. Since $(2,0)(2,0)(2,0) \in I$ and $(4,0) \notin I, I$ is not a 2-absorbing ideal of $R$. For an infinite weakly 2-absorbing ideal that is not a 2-absorbing ideal, let $M$ be as above and $K=M[X]$. Then $K$ is an infinite ideal of $\mathbb{Z}_{8}[X]$. Let $R=\mathbb{Z}_{8}(+) K$ and let $I=\{0\}(+) K$. Then $I$ is an infinite ideal of $R$. Again, since abc $\in I$ for some $a, b, c \in R \backslash I$ if and only if abc $=(0,0), I$ is a weakly 2-absorbing ideal of $R$.

We start with the following trivial lemma that we omit its proof.
Lemma 2.2. If $P_{1}$ and $P_{2}$ are two distinct weakly prime ideals of a commutative ring $R$, then $P_{1} \cap P_{2}$ is a weakly 2-absorbing ideal of $R$.

Let $I$ be a weakly 2 -absorbing ideal of a ring $R$ and $a, b, c \in R$. We say $(a, b, c)$ is a triple-zero of $I$ if $a b c=0, a b \notin I, b c \notin I$, and $a c \notin I$.

Theorem 2.3. Let I be a weakly 2-absorbing ideal of a ring $R$ and suppose that $(a, b, c)$ is a triple-zero of $I$ for some $a, b, c \in R$. Then
(1) $a b I=b c I=a c I=\{0\}$.
(2) $a I^{2}=b I^{2}=c I^{2}=\{0\}$.

Proof. (1). Suppose that $a b i \neq 0$ for some $i \in I$. Then $a b(c+i) \neq 0$. Since $a b \notin I$, we conclude that either $a(c+i) \in I$ or $b(c+i) \in I$, and hence $a c \in I$ or $b c \in I$, a contradiction. Thus $a b I=\{0\}$. Similarly, one can show that $b c I=a c I=\{0\}$.
(2). Suppose that $a i_{1} i_{2} \neq 0$ for some $i_{1}, i_{2} \in I$. Since $a b I=a c I=b c I=\{0\}$ by (1), we conclude that $a\left(b+i_{1}\right)\left(c+i_{2}\right)=a i_{1} i_{2} \neq 0$. Hence either $a\left(b+i_{1}\right) \in I$ or $a\left(c+i_{2}\right) \in I$ or $\left(b+i_{1}\right)\left(c+i_{2}\right) \in I$, and thus either $a b \in I$ or $a c \in I$ or $b c \in I$, a contradiction. Thus $a I^{2}=\{0\}$. Similarly, $b I^{2}=c I^{2}=\{0\}$.

Theorem 2.4. Let I be a weakly 2-absorbing ideal of $R$ that is not a 2-absorbing ideal. Then $I^{3}=\{0\}$.
Proof. Since $I$ is not a 2-absorbing ideal of $R$, I has a triple-zero $(a, b, c)$ for some $a, b, c \in R$. Suppose that $i_{1} i_{2} i_{3} \neq 0$ for some $i_{1}, i_{2}, i_{3} \in I$. Then by Theorem 2.3 we have $\left(a+i_{1}\right)\left(b+i_{2}\right)\left(c+i_{3}\right)=i_{1} i_{2} i_{3} \neq 0$. Hence either $\left(a+i_{1}\right)\left(b+i_{2}\right) \in I$ or $\left(a+i_{1}\right)\left(c+i_{3}\right) \in I$ or $\left(b+i_{2}\right)\left(c+i_{3}\right) \in I$, and thus either $a b \in I$ or $a c \in I$ or $b c \in I$, a contradiction. Hence $I^{3}=\{0\}$.

Corollary 2.5. Let $I$ be a weakly 2absorbing ideal of $R$. If $I$ is not a 2 -absorbing ideal of $R$, then $I \subseteq \operatorname{Nil}(R)$.

It should be noted that a proper ideal $I$ of $R$ with $I^{3}=0$ need not be a weakly 2 -absorbing ideal of $R$. We have the following example.

Example 2.6. $R=\mathbb{Z}_{16}$. Then $I=\{0,8\}$ is an ideal of $\mathbb{Z}_{16}$ and $I^{3}=0$, but 2.2.2 $=8 \in I$ and $4 \notin I$.

Theorem 2.7. Let I be a weakly 2-absorbing ideal of $R$ that is not a 2-absorbing ideal. Then
(1) If $w \in \operatorname{Nil}(R)$, then either $w^{2} \in I$ or $w^{2} I=w I^{2}=\{0\}$.
(2) $\operatorname{Nil}(R)^{2} I^{2}=\{0\}$.

Proof. (1). Let $w \in \operatorname{Nil}(R)$. First, we show that if $w^{2} I \neq\{0\}$, then $w^{2} \in I$. Hence assume that $w^{2} I \neq\{0\}$. Let $n$ be the least positive integer such that $w^{n}=0$. Then $n \geq 3$ and for some $i \in I$ we have $w^{2}\left(i+w^{n-2}\right)=w^{2} i \neq 0$. Hence either $w^{2} \in I$ or $\left(w i+w^{n-1}\right) \in I$. If $w^{2} \in I$, then we are done. Thus assume $\left(w i+w^{n-1}\right) \in I$. Hence $w^{n-1} \in I$ and $w^{n-1} \neq 0$, and thus $w^{2} \in I$. Hence for each
$w \in \operatorname{Nil}(R)$, we have either $w^{2} \in I$ or $w^{2} I=\{0\}$. Now assume that $v^{2} \notin I$ for some $v \in \operatorname{Nil}(R)$. Then $v^{2} I=\{0\}$. We will show that $v I^{2}=\{0\}$. Assume that $v i_{1} i_{2} \neq 0$ for some $i_{1}, i_{2} \in I$. Let $m$ be the least positive integer such that $v^{m}=0$. Since $v^{2} \notin I, m \geq 3$ and $v^{2} I=0$. Hence $v\left(v+i_{1}\right)\left(v^{m-2}+i_{2}\right)=v i_{1} i_{2} \neq 0$. Since $0 \neq v\left(v+i_{1}\right)\left(v^{m-2}+i_{2}\right) \in I$, one can conclude that either $v^{2} \in I$ or $v^{m-1} \neq 0$ and $v^{m-1} \in I$. Hence in both cases, we have $v^{2} \in I$, a contradiction. Thus $v I^{2}=\{0\}$.
(2). Let $a, b \in \operatorname{Nil}(R)$. If either $a^{2} \notin I$ or $b^{2} \notin I$, then $a b I^{2}=\{0\}$ by (1). Hence suppose that $a^{2} \in I$ and $b^{2} \in I$. Then $a b(a+b) \in I$. If $(a, b, a+b)$ is a triple-zero of $I$, then $a b I=\{0\}$ by Theorem 2.3(1), and hence $a b I^{2}=\{0\}$. if $(a, b, a+b)$ is not a triple-zero of $I$, then one can easily see that $a b \in I$, and hence $a b I^{2}=\{0\}$ by Theorem 2.4.

Corollary 2.8. Suppose that $A, B, C$ are weakly 2-absorbing ideals of a ring $R$ such that none of them is a 2-absorbing ideal of $R$. Then $A^{2} B C=A B^{2} C=$ $A B C^{2}=A^{2} B^{2}=A^{2} C^{2}=B^{2} C^{2}=\{0\}$

If $I$ is a 2 -absorbing ideal of a ring $R$, then there are at most two prime ideals of $R$ that are minimal over $I$ (see [4, Theorem 2.3] and [3, Theorem 2.5]). In the following result, we show that for every $n \geq 2$, there is a ring $R$ and a nonzero weakly 2 -absorbing ideal $I$ of $R$ such that there are exactly $n$ prime ideals of $R$ that are minimal over $I$.

Theorem 2.9. Let $n \geq 2$. Then there is a ring $R$ and a nonzero weakly 2absorbing $I$ ideal of $R$ such that there are exactly $n$ prime ideals of $R$ that are minimal over $I$.

Proof. Let $n \geq 2$ and $D=\mathbb{Z}_{8} \times \cdots \times \mathbb{Z}_{8}$ (n times). Let $M=\{0,4\}$ an ideal of $\mathbb{Z}_{8}$. For every $x=\left(a_{1}, \ldots, a_{n}\right) \in D$, define $x M=a_{1} M$. Then $M$ is a $D$-module. Now consider the idealization ring $R=D(+) M$ and $I=\{(0, \ldots, 0)\}(+) M$. We note that if $a, b, c \in R \backslash I$ and $a b c \in I$, then $a b c=((0, \ldots, 0), 0)$. Hence $I$ is a nonzero weakly 2 -absorbing ideal of $R$. Since every prime ideal of $R$ is of the form $P(+) M$ for some prime ideal $P$ of $D$ by [5, Theorem 25.1 (3)], we conclude that there are exactly $n$ prime ideals of $R$ that are minimal over $I$.

Theorem 2.10. Let $R=R_{1} \times R_{2}$ be a decomposable commutative ring and $I$ be a proper ideal of $R_{1}$. The following statements are equivalent:
(1) $I \times R_{2}$ is a weakly 2-absorbing ideal of $R$.
(2) $I \times R_{2}$ is a 2-absorbing ideal of $R$.
(3) $I$ is a 2-absorbing ideal of $R_{1}$.

Proof. (1) $\Rightarrow(2)$. Since $I \times R_{2} \nsubseteq \operatorname{Nil}(R), I \times R_{2}$ must be a 2 -absorbing ideal of $R$ by Corollary 2.5. $(2) \Rightarrow(3)$. The claim is clear. $(3) \Rightarrow(1)$. If $I$ is a 2 -absorbing ideal of $R_{1}$, then it is easily verified that $I \times R_{2}$ is a 2 -absorbing ideal of $R$, and thus $I \times R_{2}$ is a weakly 2 -absorbing ideal of $R$.

Theorem 2.11. Let $R=R_{1} \times R_{2}$ where $R_{1}$ and $R_{2}$ are commutative rings with identity. Let $I_{1}$ be a nonzero proper ideal of $R_{1}$ and $J$ be a nonzero ideal of $R_{2}$. The following statements are equivalent:
(1) $I \times J$ is a weakly 2-absorbing ideal of $R$.
(2) $J=R_{2}$ and $I$ is a 2-absorbing ideal of $R_{1}$ or $J$ is a prime ideal of $R_{2}$ and $I$ is a prime ideal of $R_{1}$.
(3) $I \times J$ is a 2-absorbing ideal of $R$.

Proof. (1) $\Rightarrow(2)$. Suppose that $I \times J$ is a weakly 2 -absorbing ideal of $R$. If $J=R_{2}$, then $I$ is a 2 -absorbing ideal of $R_{1}$ by Theorem 2.10. Suppose that $J \neq R_{2}$. We show that $J$ is a prime ideal of $R_{2}$ and $I$ is a prime ideal of $R_{1}$. Let $a, b \in R_{2}$ such that $a b \in J$, and let $0 \neq i \in I$. Then $(i, 1)(1, a)(1, b)=$ $(i, a b) \in I \times J \backslash\{(0,0)\}$. Since $(1, a)(1, b)=(1, a b) \notin I_{1} \times J$, we conclude that either $(i, 1)(1, a)=(i, a) \in I \times J$ or $(i, 1)(1, b)=(i, b) \in I \times J$, and hence either $a \in J$ or $b \in J$. Thus $J$ is a prime ideal of $R_{2}$. Similarly, let $c, d \in R_{1}$ such that $c d \in I$, and let $0 \neq j \in J$. Then $(c, 1)(d, 1)(1, j)=(c d, j) \in I \times J \backslash\{(0,0)\}$. Since $(c, 1)(d, 1)=(c d, 1) \notin I \times J$, we conclude that either $(c, 1)(1, j)=(c, j) \in I \times J$ or $(d, 1)(1, j)=(d, j) \in I \times J$, and thus either $c \in I$ or $d \in I$. Hence $I$ ia a prime ideal of $R_{1} .(2) \Rightarrow(3)$. If $J=R_{2}$ and $I$ is a 2 -absorbing ideal of $R_{1}$, then $I \times R_{2}$ is a 2 -absorbing ideal of $R$ by Theorem 2.10. Suppose that $I$ is a prime ideal of $R_{1}$ and $J$ is a prime ideal of $R_{2}$. Suppose that $\left(a_{1}, b_{1}\right)\left(a_{2}, b_{2}\right)\left(a_{3}, b_{3}\right) \in I \times J$ for some $a_{1}, a_{2}, a_{3} \in R_{1}$ and for some $b_{1}, b_{2}, b_{3} \in R_{2}$. Then at least one of the $a_{i}^{\prime} s$ is in $I$, say $a_{1}$, and at least one of the $b_{i}^{\prime} s$ is in $J$, say $b_{2}$. Thus $\left(a_{1}, b_{1}\right)\left(a_{2}, b_{2}\right) \in I \times J$. Hence $I \times J$ is a 2 -absorbing ideal of $R .(3) \Rightarrow(1)$. No comments.

The following example shows that the hypothesis that $J$ ia a nonzero ideal of $R_{2}$ in Theorem 2.11 is crucial.

Example 2.12. Let $R_{1}=\mathbb{Z}_{8}(+) M$ and $I=\{0\}(+) M$ as in example 2.1. Let $R_{2}$ be a field. Then $I \times\{0\}$ is a weakly 2-absorbing ideal of $R_{1} \times R_{2}$ that is not a 2-absorbing ideal of $R_{1} \times R_{2}$. Observe that $I$ is not a prime ideal of $R_{1}$.

Theorem 2.13. Let $R=R_{1} \times R_{2}$ be a commutative ring. Let $I$ be a nonzero proper ideal of $R_{1}$ and $J$ be an ideal of $R_{2}$. The following statements are equivalent:
(1) $I \times J$ is a weakly 2-absorbing ideal of $R$ that is not a 2-absorbing ideal.
(2) $I$ is a weakly prime ideal of $R_{1}$ that is not a prime ideal and $J=\{0\}$ is a prime ideal of $R_{2}$.

Proof. (1) $\Rightarrow(2)$. Assume that $I \times J$ is a weakly 2 -absorbing ideal of $R$ that is not a 2 -absorbing ideal. Suppose that $J \neq\{0\}$. Then $I \times J$ is a 2 -absorbing ideal of $R$ by Theorem 2.11, which contradicts the hypothesis. Thus $J=\{0\}$. We show that $J=\{0\}$ is a prime ideal of $R_{2}$ (and hence $R_{2}$ is an integral domain). Suppose that $a b \in J=\{0\}$ for some $a, b \in R_{2}$. Let $0 \neq i \in I$. Since $(i, 1)(1, a)(1, b)=(i, a b) \in I \times J \backslash\{(0,0)\}$ and $(1, a)(1, b)=(1, a b) \notin I \times J$, we conclude that either $(i, 1)(1, a)=(i, a) \in I \times J$ or $(i, 1)(1, b)=(i, b) \in I \times J$, and thus $a \in J$ or $b \in J$. Hence $J=\{0\}$ is a prime ideal of $R_{2}$. We show that $I$ is a weakly prime ideal of $R_{1}$. Suppose that $a b \in I \backslash\{0\}$ for some $a, b \in R_{1}$. Since $(a, 1)(b, 1)(1,0)=(a b, 0) \in I \times\{0\} \backslash\{(0,0)\}$ and $(a, 1)(b, 1)=(a b, 1) \notin I \times\{0\}$, we conclude that either $(a, 1)(1,0)=(a, 0) \in I \times\{0\}$ or $(b, 1)(1,0)=(b, 0) \in I \times\{0\}$, and thus either $a \in I$ or $b \in I$. Hence $I$ is a weakly prime ideal of $R_{1}$. If $I$ is a prime ideal of $R_{1}$, then it is easily verified that $I \times\{0\}$ is a 2 -absorbing ideal of $R$, which is a contradiction. (2) $\Rightarrow(1)$. Suppose that $I$ is a weakly prime ideal of $R_{1}$ that is not a prime ideal and $J=\{0\}$ is a prime ideal of $R_{2}$. We show that $I \times\{0\}$ is a weakly 2 -absorbing ideal of $R$. Suppose that $(a, b)(c, d)(e, f)=(a c e, b d f) \in I \times\{0\} \backslash\{(0,0)\}$. Since $I$ is a weakly prime of $R_{1}$, we may assume $a \in I$. Since $R_{2}$ is an integral domain, we may assume $d=0$. Hence $(a, b)(c, d)=(a, b)(c, 0)=(a c, 0) \in I \times\{0\}$. Thus $I \times\{0\}$ is a weakly 2 -absorbing ideal of $R$. We show that $I \times\{0\}$ is not a 2 -absorbing ideal of $R$. Since $I$ is a weakly prime ideal of $R_{1}$ that is not a prime ideal, there are $a, b \in R_{1}$ such that $a b=0$ but neither $a \in I$ nor $b \in I$. Since $(a, 1)(b, 1)(1,0)=(0,0)$ and neither $(a, 1)(b, 1)=(a b, 1) \in I \times\{0\}$ nor $(a, 1)(1,0)=(a, 0) \in I \times\{0\}$ nor $(b, 1)(1,0)=(b, 0) \in I \times\{0\}$, we conclude that $I \times\{0\}$ is not a 2 -absorbing ideal of $R$.

Let $R_{1}, R_{2}$ and $R_{3}$ be commutative rings with identity and set $R=R_{1} \times R_{2} \times R_{3}$. An ideal $I$ of $R$ will have the form $I_{1} \times I_{2} \times I_{3}$ where $I_{1}, I_{2}$ and $I_{3}$ are ideals of $R_{1}, R_{2}$ and $R_{3}$, respectively. The next two theorems show that weakly 2 -absorbing ideals are really of interest in rings of this form.

Theorem 2.14. Let $R=R_{1} \times R_{2} \times R_{3}$ where $R_{1}, R_{2}$ and $R_{3}$ are commutative rings with identity. If $I$ is a weakly 2-absorbing ideal of $R$, then either $I=$ $\{(0,0,0)\}$, or $I$ is a 2-absorbing ideal of $R$.

Proof. Since $\{0\}$ is a weakly 2 -absorbing ideal in any ring, we may assume that $I=I_{1} \times I_{2} \times I_{3} \neq\{(0,0,0)\}$. Since $I \neq\{(0,0,0)\}$, there is an element $(0,0,0) \neq(a, b, c) \in I$. Then $(a, 1,1)(1, b, 1)(1,1, c)=(a, b, c)$, and hence either $(a, b, 1) \in I$ or $(a, 1, c) \in I$ or $(1, b, c) \in I$. If $(a, b, 1) \in I$, then $I_{3}=R_{3}$. Likewise if $(a, 1, c) \in I$ or $(1, b, c) \in I$, then $I_{2}=R_{2}$ or $I_{1}=R_{1}$, respectively. So $I=I_{1} \times I_{2} \times R_{3}$ or $I=I_{1} \times R_{2} \times I_{3}$ or $I=R_{1} \times I_{2} \times I_{3}$. Hence $I \nsubseteq N i l(R)$. Since $I$ is a weakly 2 -absorbing ideal of $R$ and $I \nsubseteq N i l(R), I$ is a 2 -absorbing ideal of $R$ by Corollary 2.5 .

Theorem 2.15. Let $R=R_{1} \times R_{2} \times R_{3}$ where $R_{1}, R_{2}$ and $R_{3}$ are commutative rings with identity. Let $I_{1}$ be a proper ideal of $R_{1}, I_{2}$ be an ideal of $R_{2}$, and $I_{3}$ be an ideal of $R_{3}$ such that $L=I_{1} \times I_{2} \times I_{3} \neq\{(0,0,0)\}$. The following statements are equivalent:
(1) $L=I_{1} \times I_{2} \times I_{3}$ is a weakly 2-absorbing ideal of $R$.
(2) $L=I_{1} \times I_{2} \times I_{3}$ is a 2-absorbing ideal of $R$.
(3) $L=I_{1} \times R_{2} \times R_{3}$ and $I_{1}$ is a 2-absorbing ideal of $R_{1}$ or $L=I_{1} \times I_{2} \times R_{3}$ such that $I_{1}$ is a prime ideal of $R_{1}$ and $I_{2}$ is a prime ideal of $R_{2}$ or $L=I_{1} \times R_{2} \times I_{3}$ such that $I_{1}$ is a prime ideal of $R_{1}$ and $I_{3}$ is a prime ideal of $R_{3}$.

Proof. (1) $\Rightarrow(2)$. Since $L$ is a nonzero weakly 2 -absorbing ideal, $L$ is a 2 absorbing ideal of $R$ by Theorem 2.14. (2) $\Rightarrow(3)$. Since $L$ is a 2 -absorbing ideal of $R, I_{1}$ is a 2-absorbing ideal of $R_{1}$. Since $I_{1}$ is a proper ideal of $R_{1}$, by the proof of Theorem 2.14 either $I_{2}=R_{2}$ or $I_{3}=R_{3}$. Assume that $I_{2} \neq R_{2}$ and $I_{3}=R_{3}$. We show that $I_{1}$ is a prime ideal of $R_{1}$ and $I_{2}$ is a prime of $R_{2}$. Let $a, b \in R_{1}$ such that $a b \in I_{1}$, and let $c, d \in R_{2}$ such that $c d \in I_{2}$. Then $(a, 1,1)(1, c d, 1)(b, 1,1)=$ $(a b, c d, 1) \in L \backslash\{(0,0,0)\}$. Since $(a, 1,1)(b, 1,1) \notin L$, we have $(a, 1,1)(1, c d, 1)=$ $(a, c d, 1) \in L$ or $(1, c d, 1)(b, 1,1)=(b, c d, 1) \in L$, and hence $a \in I_{1}$ or $b \in$ $I_{1}$. Thus $I_{1}$ is a prime ideal of $R_{1}$. Similarly, since $(a b, 1,1)(1, c, 1)(1, d, 1)=$ $(a b, c d, 1) \in L \backslash\{(0,0,0)\}$ and $(1, c, 1)(1, d, 1)=(1, c d, 1) \notin L$, we conclude that either $(a b, 1,1)(1, c, 1)=(a b, c, 1) \in L$ or $(a b, 1,1)(1, d, 1)=(a b, d, 1) \in L$, and hence either $c \in I_{2}$ or $d \in I_{2}$. Thus $I_{2}$ is a prime ideal of $R_{2}$. Finally, assume $I_{2}=R_{2}$ and $I_{3} \neq R_{3}$. By an argument similar to that we applied on the ideal $I_{1} \times I_{2} \times R_{3}$, we conclude that $I_{1}$ is a prime ideal of $R_{1}$ and $I_{3}$ is a prime ideal of $R_{3}$. $(3) \Rightarrow(1)$. If $L$ is one of the given three forms, then it is easily verified that $L$ is a 2-absorbing ideal of $R$, and hence $L$ is a weakly 2 -absorbing ideal of $R$.

Theorem 2.16. Let $A$ be a weakly 2-absorbing ideal of a commutative ring $R$. Then:
(1) If $I$ is an ideal of $R$ with $I \subseteq A$, then $A / I$ is a weakly 2-absorbing ideal of $R / I$.
(2) If $R_{0}$ is a subring of $R$, then $A \cap R_{0}$ is a weakly 2-absorbing ideal of $R_{0}$.
(3) If $S$ is a multiplicatively closed subset of $R$ with $A \cap S=\emptyset$, then $A_{S}$ is a weakly 2-absorbing ideal of $R_{S}$.

Proof. (1). Let $\bar{R}=R / I, \bar{A}=A / I$, and pick $\bar{a}, \bar{b}, \bar{c} \in \bar{R}$ such that $0 \neq \bar{a} \bar{b} \bar{c} \in \bar{A}$. Since $\bar{a} \bar{b} \bar{c} \neq 0$, we have $a b c \in R-I$. Hence $0 \neq a b c \in A$. Since $A$ is weakly 2 -absorbing, we have $a b \in A$ or $a c \in A$ or $b c \in A$. Consequently, $\bar{a} \bar{b} \in \bar{A}$ or $\bar{a} \bar{c} \in \bar{A}$ or $\bar{b} \bar{c} \in \bar{A}$. (2). The proof is straightforward. (3). Suppose that $0 \neq(x / r)(y / s)(z / t) \in A_{S}$ where $x, y, z \in R$ and $r, s, t \in S$ but $(x / r)(y / s) \notin A_{S}$ and $(x / r)(z / s) \notin A_{S}$. Then $(x y z) /(r s t)=a / u$ for some $a \in A$ and $u \in S$. So there exists $v \in S$ with vuxyz $=$ vrsta $\in A$. Thus we have $0 \neq(v u x) y z \in A$ but $(v u x) y \notin A$ and $(v u x) z \notin A$. Since $A$ is weakly 2 -absorbing, it follows that $y z \in A$, that is $(y / s)(z / t) \in A_{S}$.

## 3. Rings with the property that all proper ideals are weakly 2-ABSORBING

For a commutative ring $R$, let $J(R)$ denotes the intersection of all maximal ideals of $R$.

Lemma 3.1. Let $R$ be a commutative ring and $a, b, c \in J(R)$. Then the ideal $a b c R$ is a weakly 2-absorbing ideal of $R$ if and only if abc $=0$.

Proof. Let $a, b, c \in J(R)$. If $a b c=0$, then $a b c R$ is a weakly 2 -absorbing ideal of $R$. Now suppose that $a b c \neq 0$ and $a b c R$ is a weakly 2 -absorbing ideal of $R$. Since $a b c R$ is a weakly 2 -absorbing ideal of $R$ and $0 \neq a b c \in a b c R$, we conclude that either $a b \in a b c R$ or $a c \in a b c R$ or $b c \in a b c R$. Without lost of generality, we may assume that $a b \in a b c R$. Thus $a b=a b c k$ for some $k \in R$, and hence $a b(1-c k)=0$. Since $c k \in J(R), 1-c k$ is a unit of $R$. Thus $a b(1-c k)=0$ implies that $a b=0$, and thus $a b c=0$ which is a contradiction. Hence $a b c=0$.

Theorem 3.2. Let $(R, M)$ be a quasi-local ring. Then every proper ideal of $R$ is weakly 2-absorbing if and only if $M^{3}=\{0\}$.

Proof. Assume that every proper ideal of $R$ is weakly 2 -absorbing. Let $a, b, c \in$ $M$. Since $a b c R$ is a weakly 2 -absorbing ideal of $R, a b c=0$ by Lemma 3.1. Thus $M^{3}=\{0\}$. Conversely, assume that $M^{3}=\{0\}$, and let $I$ be a proper ideal of $R$ such that $I \neq\{0\}$. Suppose that $a b c \in I$ and $a b c \neq 0$. Since $M^{3}=\{0\}$ and $a b c \neq 0, a$ is a unit of $R$ or $b$ is a unit of $R$ or $c$ is a unit of $R$, and thus either $a b \in I$ or $a c \in I$ or $b c \in I$. Hence $I$ is a weakly 2 -absorbing ideal of $R$.

Corollary 3.3. Let $(R, M)$ be a quasi-local ideal of $R$ such that $M^{2}=\{0\}$. Then every proper ideal of $R$ is a 2-absorbing ideal of $R$.
Proof. Let $I$ be a proper ideal of $R$ and suppose that $a b c \in I$ for some $a, b, c \in R$. Since $M^{3}=\{0\}, I$ is a weakly 2 -absorbing ideal of $R$ by Theorem 3.2. Hence if $a b c \in I \backslash\{0\}$, then there is nothing to prove. Thus assume that $a b c=0$. Since $M^{2}=\{0\}$ and $a b c=0$, either $a b=0 \in I$ or $a c \in I$ or $b c=0 \in I$. Thus $I$ is a 2 -absorbing ideal of $R$.

Theorem 3.4. Let $\left(R_{1}, M_{1}\right)$ and $\left(R_{2}, M_{2}\right)$ be quasi-local commutative rings with maximal ideals $M_{1}$ and $M_{2}$ respectively, and let $R=R_{1} \times R_{2}$. Then every proper ideal of $R$ is a weakly 2-absorbing ideal of $R$ if and only if $M_{1}^{2}=M_{2}^{2}=\{0\}$ and either $R_{1}$ or $R_{2}$ is a field.
Proof. Suppose that every proper ideal of $R$ is a weakly 2 -absorbing ideal of $R$. Let $a, b \in M_{1}$ and suppose that $a b \neq 0$. Then $I=a b R_{1} \times\{0\}$ is a weakly 2 absorbing ideal of $R$. Since $(a, 1)(b, 1)(1,0)=(a b, 0) \in I \backslash\{(0,0)\}$ and $(a, 1)(b, 1) \notin$ $I$, either $(a, 1)(1,0)=(a, 0) \in I$ or $(b, 1)(1,0)=(b, 0) \in I$. Assume that $(a, 0) \in I$. Then $a=a b k$ for some $k \in R_{1}$. Hence $a(1-b k)=0$. Since $1-b k$ is a unit of $R_{1}, a=0$ which is a contradiction. Also, if $(b, 0) \in I$, then one can conclude that $b=0$ which is a contradiction again. Thus $M_{1}^{2}=\{0\}$. Now assume $a, b \in M_{2}$ such that $a b \neq 0$. Then $I=\{0\} \times a b R_{2}$ is a weakly 2 -absorbing ideal of $R$. Since $(1, a)(1, b)(0,1)=(0, a b) \in I$, by an argument similar to that we applied on $M_{1}$ we conclude that either $a=0$ or $b=0$ which is a contradiction. Thus $M_{2}^{2}=\{0\}$. Suppose that $R_{1}$ is not a field. We show that $R_{2}$ is a field. Since $R_{1}$ is not a field, $M_{1} \neq\{0\}$ and $J=M_{1} \times\{0\}$ is a weakly 2 -absorbing ideal of $R$. Suppose that $R_{2}$ is not a field. Since $M_{2}^{2}=\{0\}$ and $R_{2}$ is not a field, there is a $c \in M_{2}$ such that $c \neq 0$ and $c^{2}=0$. Let $m \in M_{1}$ such that $m \neq 0$. Then $(m, 1)(1, c)(1, c)=\left(m, c^{2}\right)=(m, 0) \in J=M_{1} \times\{0\} \backslash\{(0,0)\}$, but neither $(m, 1)(1, c)=(m, c) \in J$ nor $(1, c)(1, c)=(1, c) \in J$, which is a contradiction. Hence $M_{2}=\{0\}$, and thus $R_{2}$ is a field. Conversely, suppose that $M_{1}^{2}=\{0\}$ and $R_{2}$ is a field. Since $M_{1}^{2}=\{0\}$, every proper ideal of $R_{1}$ is a 2 -absorbing ideal of $R_{1}$ by Corollary 3.3. Since $M_{1}^{2}=\{0\}$ and $R_{2}$ is a field, the ideal $\{0\} \times R_{2}$ is a weakly 2 -absorbing ideal of $R$. Since $R_{2}$ is a field, the ideal $R_{1} \times\{0\}$ is a weakly 2 -absorbing ideal of $R$. Let $J$ be a proper ideal of $R_{1}$ such that $J \neq\{0\}$. Since $J$ is a 2-absorbing ideal of $R_{1}, J \times R_{2}$ is a weakly 2 -absorbing ideal of $R$ by Theorem 2.10. Finally, we show that $I=J \times\{0\}$ is a weakly 2 -absorbing ideal of $R$. Suppose that $\left(a_{1}, b_{1}\right)\left(a_{2}, b_{2}\right)\left(a_{3}, b_{3}\right) \in R \backslash\{(0,0)\}$ for some $a_{1}, a_{2}, a_{3} \in R_{1}$ and for some $b 1, b_{2}, b_{3} \in R_{2}$. Since $M_{1}^{2}=\{0\}$, only one of the $a_{i}$ 's is in $M_{1}$, say $a_{1} \in M_{1}$ and $a_{2}, a_{3}$ are units of $R_{1}$. Since $a_{1} a_{2} a_{3} \in J$ and $a_{2}, a_{3}$ are units of $R_{1}$,
$a_{1} \in J$. Since $R_{2}$ is a field and $b_{1} b_{2} b_{3}=0$, at least one of the $b_{i}$ 's is equal to 0 , say $b_{2}=0$. Hence $\left(a_{1}, b_{1}\right)\left(a_{2}, 0\right)=\left(a_{1} a_{2}, 0\right) \in I$. Thus $I$ is a weakly 2 -absorbing ideal of $R$.

Theorem 3.5. Let $R_{1}, R_{2}$, and $R_{3}$ be commutative rings, and let $R=R_{1} \times R_{2} \times$ $R_{3}$. Then every proper ideal of $R$ is a weakly 2-absorbing ideal of $R$ if and only if $R_{1}, R_{2}, R_{3}$ are fields.

Proof. If $R_{1}, R_{2}$, and $R_{3}$ are fields, then by [4, Theorem 3.4(3)] every nonzero proper ideal of $R$ is a 2-absorbing ideal of $R$, and hence every proper ideal of $R$ is a weakly 2 -absorbing ideal of $R$. Conversely, suppose that every proper ideal of $R$ is a weakly 2 -absorbing ideal of $R$ and one of the $R_{i}^{\prime} s, 1 \leq i \leq 3$, is not a field. Without lost of generality, we may assume $R_{1}$ is not a field. Hence $R_{1}$ has a proper ideal $J$ such that $J \neq\{0\}$. Let $I=J \times\{0\} \times\{0\}$. Then $I$ is a weakly 2 -absorbing ideal of $R$. Let $m \in J$ such that $m \neq 0$. Then $(m, 1,1)(1,0,1)(1,1,0)=(m, 0,0) \in$ $I \backslash\{(0,0,0)\}$ but neither $(m, 1,1)(1,0,1)=(m, 0,1) \in I$ nor $(m, 1,1)(1,1,0)=$ $(m, 1,0) \in I$ nor $(1,0,1)(1,1,0)=(1,0,0) \in I$, which is a contradiction. Thus $R_{1}, R_{2}$, and $R_{3}$ are fields.

Lemma 3.6. Suppose that every proper ideal of $R$ is a weakly 2-absorbing ideal. Then $R$ has at most three maximal ideals.

Proof. Suppose that $M_{1}, M_{2}, M_{3}, M_{4}$ are distinct maximal ideals of $R$. Let $I=M_{1} \cap M_{2} \cap M_{3}$. Since there are three prime ideals of $R$ that are minimal over $I, I$ is not a 2 -absorbing ideal of $R$ by [3, Theorem 2.5]. Hence $I$ is a weakly 2 -absorbing ideal of $R$ that is not a 2-absorbing ideal of $R$. Thus $I^{3}=\{0\}$ by Theorem 2.4. Hence $I^{3}=M_{1}^{3} M_{2}^{3} M_{3}^{3}=\{0\} \subset M_{4}$, and thus one of the $M_{i}$ 's, $1 \leq i \leq 3$, is contained in $M_{4}$, which is a contradiction. Hence $R$ has at most three distinct maximal ideals.

Theorem 3.7. A commutative ring $R$ has the property that every proper ideal is a weakly 2-absorbing ideal of $R$ if and only if one of the following statements hold:
(1) $(R, M)$ is a quasi-local ring with $M^{3}=0$.
(2) $R$ is ring-isomorphic to $R_{1} \times F$, where $R_{1}$ is a quasi-local ring with maximal ideal $M$ such that $M^{2}=\{0\}$ and $F$ is a field.
(3) $R$ is ring-isomorphic to $F_{1} \times F_{2} \times F_{3}$, where $F_{1}, F_{2}, F_{3}$ are fields.

Proof. If $R$ satisfies condition (1), then every proper ideal of $R$ is a weakly 2 -absorbing ideal of $R$ by Theorem 3.2. If $R$ satisfies condition (2), then every proper ideal of $R$ is a weakly 2 -absorbing ideal of $R$ by Theorem 3.4. If $R$ satisfies
condition (3), then every proper ideal of $R$ is a weakly 2 -absorbing ideal of $R$ by Theorem 3.5. Conversely, suppose that every proper ideal of $R$ is a weakly 2 absorbing ideal. Then $R$ has at most three maximal ideals by Lemma 3.6. Hence we consider the following three cases: Case 1. Suppose that $R$ has exactly one maximal ideal, call it $M$. Then $M^{3}=\{0\}$ by Theorem 3.2. Case 2. Suppose that $R$ has exactly two maximal ideals, say $M_{1}$ and $M_{2}$ are the maximal ideals of $R$. Then $J(R)=M_{1} \cap M_{2}$ is a weakly 2 -absorbing ideal of $R$ (in fact, $J(R)$ is a 2 -absorbing ideal of $R$ ). We show $J(R)^{3}=\{0\}$. Let $a, b, c \in J(R)$. Since $a b c R$ is a weakly 2 -absorbing ideal of $R$, we conclude that $a b c=0$ by Lemma 3.1. Thus $J(R)^{3}=M_{1}^{3} \cap M_{2}^{3}=\{0\}$. Hence R is ring-isomorphic to $R / M_{1}^{3} \times R / M_{2}^{3}$. Since $R / M_{1}^{3}$ and $R / M_{2}^{3}$ are quasi-local commutative rings, we conclude that $R$ is ring-isomorphic to $R_{1} \times F$, where $R_{1}$ is quasi-local ring with maximal ideal $M$ such that $M^{2}=\{0\}$ and $F$ is a field by Theorem 3.4. Case 3. Suppose that $R$ has exactly three maximal ideals, say $M_{1}, M_{2}, M_{3}$ are the maximal ideals of $R$. Hence $J(R)=M_{1} \cap M_{2} \cap M_{3}$ is a weakly 2-absorbing ideal of $R$. Since $J(R)$ is the intersection of three prime ideals of $R, J(R)$ is not a 2 -absorbing ideal of $R$ by [4]. Hence $J(R)^{3}=\{0\}$ by Theorem 2.4. Since $J(R)^{3}=M_{1}^{3} \cap M_{2}^{3} \cap M_{3}^{3}=\{0\}$, we conclude that $R$ is ring-isomorphic to $R / M_{1}^{3} \times R / M_{2}^{3} \times R / M_{3}^{3}$. Thus $R$ is ring-isomorphic to $F_{1} \times F_{2} \times F_{3}$, where $F_{1}, F_{2}, F_{3}$ are fields by Theorem 3.5.

Corollary 3.8. Let $n$ be a positive integer. Then every proper ideal of $R=\mathbb{Z}_{n}$ is a weakly 2-absorbing ideal of $R$ if and only if either $n=q^{3}$ for some prime positive integer $q$ or $n=q^{2} p$ for some distinct prime positive integers $q, p$ or $n=q_{1} q_{2} q_{3}$ for some distinct prime positive integers $q_{1}, q_{2}, q_{3}$.

Let $I$ be a 2-absorbing ideal of a commutative ring $R$ and suppose that $I_{1} I_{2} I_{3} \subseteq I$ for some ideals $I_{1}, I_{2}$, and $I_{3}$ of $R$. Then by [4] either $I_{1} I_{2} \subseteq I$ or $I_{1} I_{3} \subseteq I$ or $I_{2} I_{3} \subseteq I$. We are unable to answer the following question:

Question. Suppose that $I$ is a weakly 2 -absorbing ideal of a commutative ring $R$ that is not a 2-absorbing ideal and $0 \neq I_{1} I_{2} I_{3} \subseteq I$ for some ideals $I_{1}, I_{2}$, and $I_{3}$ of $R$. Does it imply that $I_{1} I_{2} \subseteq I$ or $I_{1} I_{3} \subseteq I$ or $I_{2} I_{3} \subseteq I$ ?

## References

[1] D. D. Anderson and M. Bataineh, Generalizations of prime ideals, Comm. Algebra 36 (2008), 686-696.
[2] D. D. Anderson and E. Smith, Weakly prime ideals, Houston J. Math., 29 (4) (2003), 831-840.
[3] D. F. Anderson and A. Badawi, On n-absorbing ideals of commutative rings, accepted, to appear in Comm. Algebra.
[4] A. Badawi, On 2-absorbing ideals of commutative rings, Bull. Austral. Math. Soc., 75 (2007), 417-429.
[5] J. Huckaba, Commutative rings with Zero-Divisors, Marcel Dekker, New York/Basil, 1988.
Received April 6, 2010
American Univ of Sharjah, Dept of Math, Box 26666, Sharjah, UAE
E-mail address: abadawi@aus.edu
University of Mohaghegh Ardabili, Dept of Math, P. O. Box 179, Ardabil, Iran
E-mail address: yousefian@uma.ac.ir, youseffian@gmail.com


[^0]:    1991 Mathematics Subject Classification. Primary 13A05, 13F05.
    Key words and phrases. Prime ideal, 2-absorbing ideal, weakly 2-absorbing ideal, weakly prime ideal, almost prime ideal, $\phi$-prime ideal.

